Transmission Line Sizing Calculations

Transmission Line Sizing Calculations 

Parameters 

A. Power (P): 100 kW 
B. Voltage (V): 11 kV 
C. Power Factor: 0.9 
D. Length of Transmission Line (L): 10 km 
E. Resistance of Conductor (R): 0.05 ohms/km 
F. ConducÆŸvity of Material (σ): 58 x 10^6 Siemens/m (for copper) 
G. Allowable Current Density: 1.2 A/mm² 

Single-Phase System
 
1. Current Carrying Capacity (Ampacity) 
I = P / (V x Power Factor) 
P = 100 kW = 100,000 W 
V = 11 kV = 11,000 V 
Power Factor = 0.9 
I = 100,000 W / (11,000 V x 0.9) 
I = 100,000 W / 9,900 
I ≈ 10.1 A 

Why Calculate Current Carrying Capacity (Ampacity)? 

CalculaÆŸng the current carrying capacity, or ampacity, is crucial to ensure that the transmission line can handle the maximum 
current without overheaÆŸng or causing damage. It helps determine the required conductor size and material

2. Voltage Drop 

Voltage Drop = (L x I x R) / 1000 
L = 10 km 
I = 10.1 A 
R = 0.05 ohms/km 
Voltage Drop = (10 km x 10.1 A x 0.05 ohms/km) / 1000 
Voltage Drop = (10 x 10.1 x 0.05) / 1000 
Voltage Drop = 0.505 V 

Why Calculate Voltage Drop? 

CalculaÆŸng the voltage drop is essenÆŸal to ensure that the transmission line can deliver the required voltage to the load. A high voltage drop can result in reduced power quality and efficiency. 

3. Conductor Sizing 

A = I / (σ x Allowable Current Density) 
I = 10.1 A 
σ = 58 x 10^6 Siemens/m = 58,000 Siemens/mm² 
Allowable Current Density = 1.2 A/mm² 
A = 10.1 A / (58,000 Siemens/mm² x 1.2 A/mm²) 
A = 10.1 A / 69,600 
A ≈ 0.145 mm²

Why Calculate Conductor Sizing? 

CalculaÆŸng the conductor sizing is necessary to determine the required cross-secÆŸonal area of the conductor to carry the maximum current without overheaÆŸng or causing damage.

Three-Phase System 

1. Current Carrying Capacity (Ampacity) 
I = P / (√3 x V x Power Factor) 
P = 100 kW = 100,000 W 
V = 11 kV = 11,000 V 
Power Factor = 0.9 
I = 100,000 W / (√3 x 11,000 V x 0.9) 
I = 100,000 W / 17,124.8 
I ≈ 5.87 A 

Why Calculate Current Carrying Capacity (Ampacity)? 

CalculaÆŸng the current carrying capacity for a three-phase system ensures that each phase can handle the maximum current without overheaÆŸng or causing damage. This is crucial for maintaining power quality and efficiency in three-phase systems. 

2.Voltage Drop
 
 Voltage Drop = (2 x L x I x R) / 1000 
L = 10 km 
I = 5.87 A 
R = 0.05 ohms/km
Voltage Drop = (2 x 10 km x 5.87 A x 0.05 ohms/km) / 1000 
Voltage Drop = (2 x 10 x 5.87 x 0.05) / 1000 
Voltage Drop = 0.587 V 

Why Calculate Voltage Drop? 

CalculaÆŸng the voltage drop in a three-phase system ensures that the transmission line can deliver the required voltage to the load, 
taking into account the increased current and resistance in three-phase systems.
 
3. Conductor Sizing 

A = I / (σ x Allowable Current Density) 
I = 5.87 A 
σ = 58 x 10^6 Siemens/m = 58,000 Siemens/mm² 
Allowable Current Density = 1.2 A/mm² 
A = 5.87 A / (58,000 Siemens/mm² x 1.2 A/mm²) 
A = 5.87 A / 69,600 
A ≈ 0.084 mm² 

Why Calculate Conductor Sizing? 

CalculaÆŸng the conductor sizing for a three-phase system determines the required cross-secÆŸonal area of each conductor to 
carry the maximum current without overheaÆŸng or causing damage, ensuring reliable operaÆŸon.

*

Post a Comment (0)
Previous Post Next Post