How to read a NEMA motor nameplate?(Articles)

 


The motor industry in North America has worked on a standardized basis since the early part of the 20th century. In 1926, the National Electrical Manufacturers Association (NEMA) was established to provide a forum for the standardization of electrical equipment, enabling consumers to select from a range of safe, effective and compatible electrical products. To this day, NEMA updates and publishes standards, application guides and technical papers for electrical products and works in advocacy for the industry.To help ensure its standards are properly met and communicated, NEMA requires that motors from different manufacturers meet or exceed minimum performance parameters and, for the most part, be about the same size. One way to ensure the identification of interchangeable motors is through the consistency of nameplate information between manufacturers. The common language of the motor nameplate enables installers, operators and maintenance personnel to understand and recognize the type of motor and that motor’s requirements quickly and easily. The nameplate defines a motor’s basic mechanical design, electrical performance and dimensional parameters. NEMA requires specific data to be included on the nameplate, but manufacturers may choose to include other information to assist in the installation, operation and maintenance of custom motors or those manufactured for specific purposes. The style of the nameplate is determined by the manufacturer



It is important to understand the specifications and other information detailed on the nameplate when purchasing an electric motor. Having the right motor for a specific application helps ensure optimum efficiency, a longer motor life and can mean significant cost savings for your business. But a nameplate remains important even after purchase, and for this reason, most are made of steel or aluminum for longevity, and the information on the plate is engraved for readability throughout the life of the motor. Nameplate information is essential for installation and wiring connection, matching an appropriate variable speed drive, repairing or replacing the motor. Understanding this data will allow you select the right motor for the job, identify performance characteristics and applications of a motor and help solve operational issues.The following illustration identifies and explains the various data fields on a standard NEMA motor nameplate and includes the required or optional information for all NEMA motor nameplates as well as information specific to Baldor-Reliance® NEMA motors


Nameplate information required or optional for all NEMA motors

01 Manufacturer

There is no defined design for this field, and it may differ from one manufacturer to the next. In addition to the name of the manufacturer, it can include the motor model, electrical style or the purpose. Here we have a Baldor-Reliance Severe Duty XT motor.

02 Hazardous location classes and groups

Key information is required to accurately specify an electric motor for use in hazardous environments, those areas where fire or explosion hazards may exist due to the presence of flammable, combustible or ignitable substances

03 Frame size (FRAME)

Motor dimension standardization is indicated by the frame size. This number reflects the same mounting and shaft information between different manufacturers in order to be consistent. Since NEMA frame size refers to mounting interfaces only, it has no direct bearing on the motor body diameter.

04 Rated voltage (VOLTS)

This data indicates the voltage at which the motor is designed to operate most efficiently; however, a motor can still operate effectively at plus or minus a 10 percent tolerance of this value. For example, a motor with a 460V rating could operate effectively at around 414V to 506V. The nameplate-defined parameters for the motor - such as power factor, efficiency, torque and current - are at rated voltage and frequency. When the motor is used at other voltages than the voltage indicated on the nameplate, its performance will be affected.

05 Rated full-load amps (F.L. AMPS)

Full-load amps represents the amount of current the motor is designed to draw at the rated load and rated voltage. Motors with a lower F.L.A. with the same amount of horsepower are considered more efficient to operate.

06 Rated full load speed (R.P.M.)

The rated full load speed is the speed at which full load torque is delivered for the rated voltage and frequency. The difference between the full load speed and the synchronous speed is called slip. The motor’s slip is determined by its design. For most induction motors, generally, the full load speed can be between 96 percent and 99 percent of the synchronous speed.

07 Frequency (HZ)

Hertz is measured in cycles per second. This is the frequency of input power for which the motor is designed to operate at the rated output power, voltage and speed. To operate successfully, the motor frequency must match the power system (supply) frequency. If more than one frequency is marked on the nameplate, then other parameters that will differ at different input frequencies have to be indicated on the nameplate as well. The most commonly occurring frequency in the United States is 60 Hertz, and the most common frequency for motors used outside the United States is 50 Hertz


Official
Electrical Info -  தமிà®´்
Whatsapp Groups
Join
Click Here

👇👇👇👇👇

https://chat.whatsapp.com/JlhNvO6YwJ3EnjUagJKXkd



You have to wait 60 seconds.

Download Timer

*

Post a Comment (0)
Previous Post Next Post