INTRODUCTION
The purpose of an electrical power system is to generate and supply electrical energy to consumers. The system should be designed and managed to deliver this energy to the utilisation points with both reliability and economy. Severe disruption to the normal routine of modern society is likely if power outages are frequent or prolonged, placing an increasing emphasis on reliability and security of supply. As the requirements of reliability and economy are largely opposed, power system design is inevitably a compromise. A power system comprises many diverse items of equipment. Figure 2.2 shows a hypothetical power system; this and Figure 2.1 illustrates the diversity of equipment that is found.
Many items of equipment are very expensive, and so the complete power system represents a very large capital investment. To maximise the return on this outlay, the system must be utilised as much as possible within the applicable constraints of security and reliability of supply. More fundamental, however, is that the power system should operate in a safe manner at all times. No matter how well designed, faults will always occur on a power system, and these faults may represent a risk to life and/or property. Figure 2.3 shows the onset of a fault on an overhead line. The destructive power of a fault arc carrying a high current is very great; it can burn through copper conductors or weld together core laminations in a transformer or machine in a very short time – some tens or hundreds of milliseconds. Even away from the fault arc itself, heavy fault currents can cause damage to plant if they continue for more than a few seconds. The provision of adequate protection to detect and disconnect elements of the power system in the event of fault is therefore an integral part of power system design. Only by so doing can the objectives of the power system be met and the investment protected. Figure 2.4 provides an illustration of the consequences of failure to provide appropriate protection.
This is the measure of the importance of protection systems as applied in power system practice and of the responsibility vested in the Protection Engineer.
Download Timer


